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g = 2t/U Ug
B = 2L/U M,
K = 2¢/U%
.. 2¢e/U Q;
K% = 2e/M W
Txy’sz = shear stress components
¥ = dynamic viscosity
v = kinematic viscosity -
Subscripts |
Xs ¥s Zs ns ... = differentiation (except on t)
INTRODUCTION

In a recent paper, wang] introduces an approximation which reduces
the compufation of threeQdimensiona1, laminar, compressible, boundary-
]ayer equations to the problem of solving two-dimensional type boundary
layer equations. - Assuming fami]iérity with Wang's work, it is to be
noted that the teﬁt case chosen by Wang had been previously studied by
Fahne]op2 who had introduced a small cross-flow perturbation methoc.
The perturbation method itself reduced the computation of the three-
dimensional boundary Tayer equations to that of two-dimensional type
boundary layer equations. While on the one hand Wang's results compare
favorably with Fannelop's, it would seem that a more stringent test of
Wang's method would be the comparison with a fully three-dimensional
boundary iayer calculation. In this note we provide such a comparison
with the resu]té from our three-dimensional ca]cu1étions. In addition
we consider another aspect of Vang's approximation for the calculation

of three-dimensional flows.



The test case which we have chosen is incompressible, laminar
flow past a flat plate with attached cylinder (sece Fig. 1). The boundary
layer of interest is formed on the plate upstream of the cylinder. This
problem has been studied by Sowerby3 with a Blasius-type series solution”
and by Dwyer4 with a finite difference method. Our method differs from
Dwyer's in that we introduce two stream functions such that the continui-

e

ty equation is satisfied.

ANALYSIS

“The governing boundary layer equations, written in Cartesian

coordinates are

u, + vy tw, = 0 ; (1)
uu, v, fwu, = - Vppyt VU (2)
Uity + Wiy v, = ~1/o p, + Wiy (3)

subject to boundary conditions

y = 0:u = v =w =0,y = U = U w = U (4)
where -1/p D = W, + WU, -1/0 p, = U + Wi ' (5)
and _

vo= oy {1+ 2o (XK s W= - 20,200 (6)

-7 (1/a2) [(x-x)2+z2]2 (1/a2)[(x-x)?+z2]2

for the present problem under investigation.
L
Introducing a Blasius-type transformation, n = (U/2vx)?y, £ = x
and z = z as well as stream functions

U = Yys VS Uyt WoE gy (7)



where

. ’ . ]/ :
v(x,y,2z) = (2va)%f(€,n,C); o(X5y52) W[gﬁélzg(ésn,c) (8)

Egs. (2) and (3) become
an + (]+8/2)an + g(1-F2) + K(1-FG) + (5*~K/2)an

~
W |
o+ - + —_ - = . 9
2¢(f,F -FF.) + 2g5(g F -GF ) 0 (9)
6, + (146/2)76 - B(1-62) + K¥(1-GF) + (*-K/2) g6
, -

" FG.) + 2e(g g - = 1

+ 2e(F6 -FG) + 2¢(g, G -CG ) 0 (10)

with the boundary conditions at n =0 : f=F=06=g =0 and at
n=e«:F=1, G=1.

To integrate Eqs. (9) and (10) two initial conditions are needed, and
these aré deduced by considering two limiting cases of Eqs. (9) and (10):
(a) £ =0,z #0; (b) ¢# 0, ¢ =0. Egs. (9) and (19), for condition (a),
reduce to Blasius.equations. Referring to Fig. (1) conditien (b) is the.
“Jine of symmetry" condition. Along this line w = 0 as well as W. In _
other words w/W = G is indeterminate. On the other hand, W and W, are
notAzero along z = 0 so that by applying L'Hopital's rule to w/U,

G = wc/NC along ¢ = 0. Consequently the equations for condition (b) are
determined from Egs. (9) and (10) by simply letting ¢ go to zern.

T6 solve Egs. (9) and (10) as well as the equations resulting from

the initial conditions, an implicit finite difference procedure of

Crank-Nicholson type fé applied. The resulting non-linear equations are

replaced initially by linear difference equations. An iteration procedure’

is used until the non-linear dffference equations corresponding to the
grid points employed have been solved. Calculations proceeded in the

downstream direction, for a given z-station, until flovw reversal appeared

A



in the u-component of velocity. Step éizes used in the calculations.
are: Ag = A = .61, an = .20. |

In order to check Wang's approximation against the full three-
dimensional calculation, we must simplify Eqs. (9) and (10) accordingly. .
We replace derivatives in the crossflow direction, i.e., the z deri-
vatives, by their values at the edge of the inviscid flow, thereby re-
dﬁcing Egs. (9) and (10) to quasi-two dimensional equations. Therefofe,
'the following relations will be usea:

6F, = G(1/Uu, - 1/UUF) ~ 6(1-F) 1/U U, &6 = 65 w

-
- ?TlJcG)

-

~ G(1-G) 7 W, = 1"

(1-6) W5 g = 0 (1)
Insofar as shear stress data and flow reversal are of importance,

Tables 1 and 2 are a comparisoh between the full and approximate three-

dimensional calculations of F (=f ) and G (=g,
n' nn n

Y atn = 0. These values
nh _

are proportional to the shear stress at the surface since

- .. ou| _ U % _ o w
T, =uao| - = w (s)° f (£,0,8) 5 1, = u=:
Xy 3y y=0 2vX nn zy dy - y=0
= W ()7 (6.0.0) (12)
H \va gnn sUST

Fig. (1) confains the flow reversal line as determined by both methods.

Up to a z or ¢ value of 6.10, the full and approximate three-dimen-
sional ca}cu]ations predict flow reversal in the u-component, the approxi-
mate method predicting flow reversal further downstream from the ]eading
edge than the full three-dimensional calculations. At ¢z = 7.32, the full
three-dimensional calculations predict flow reversal while the approximate

method does not. By the approximate method, Fn(O) (or fnn(O)) reaches a



minimum and then increases with x or &, the minimum point shifting to
smaller £ values as ¢ increases. The calculations of Gn(O) by both
-~ methods, and for all ¢ values, even in the region where the approximate.
* method fails to predict flow reversal, show good agreement.

While in two-dimensional, incompressible flow, the necessary
condition -for flow reversal is‘an adverse pressure'gradient,,we find
that for three-dimensional flows an adverse pressure gradient is not
necessarily a necessary condition for flow reversal. As a matter of
fact, for the present problem at & = 9.05 and flow reversal, the
pressure grad{ent is favorable. As Dwyer‘4 noted, the flow reversal of
the u-component of velocity is caused by crossflow effects near the
bottom of the boundary layer. That is, flow reversal is driven by the
convective term, WU which is positive and overcomes the negative Py
term. Consequently W, is an important term, and in particular, u, s
insofar as f]ow reversal is concerned so that by approximating u, in
certain regions of the flow field, wu, can take on values which do not
balance properly with the pressure gradient term. This is the case at
‘c = 7.32 - the quasi-two dimensiona]vapproximation breaks down as flow
reversal is approached, although for a large range of ¢ values, the
approximate values of4Fn(0) are in good agreement with the full three-
dimensional calculations. This is also true at ¢ = 9.15.

Ap most, then, what one may conclude from these resuits, is that
Nang'sjapproximation may not be valid in some applications and, more
likely, in some particular region of a flow field, fo} example, as
discussed above. UWhere the method does not break down, agreement is

most satisfactory with the full caqu]ations.



To explore the possible extensibh.of Wang's method for further
research, we considered the following calculation: adopting the
approximate method, Eq. (11), along the line ¢z = 3.05 = constant, and
using the subsequent results as initial conditions for the full three-
dimensional calculations, we find that at the next station, ¢ = 3.66,
flow reversal is predicted at the same ¢ value as that cbtained by
starting the calculations along the line of iymmetry, z = 0. In other
words, the approximate method may berf interest in calculating
three-dimensional flows where a line of symmetry is not present. The
major difficulty in such flows are the initial conditions with respect
to the crossflow derivatives and their calculation. The idea is to
apply the approximate method along some initial line and then revert
to the full three-dimensional calculations. This idea is being applied

to other problems as well.
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TABLE 1

COMPARISON BETWEEMN FULL AND APPROXIMATE
THREE-DIMENSIONAL BOUMDARY LAYER CALCULATIONS OF Fn(O)

r = 3.05 cm. r= 6.10ecm. ¢ = 7.32 cm. r = 9.15 cnm.

g-cm.  Full  Approx.  Full Approx. Full Approx. Full  Approx.
0 L4656  .4696 L4696 .4696 L4696  .4696 L4696 .4696
61 4677  .4677 L4677  .4677 4678 .4678 L4678  .4679
3.66 .46317 .4631 .4637  .4637 L4640 4640 L4646 L4646
7.93 .4508  .4508 .4528  .4529 L4539 4540 L4558 L4560
10.37 .4408 .4408 L4442 4444 L4461 L4464 L4493 L4496
13.42  .4230  .4231 L4296 .4300 .4331  .4337 4389 - .4397
17.69 .3814  .3818 .3974  .3989 .4056  .4075 L4188 4213
20.13  .3417  .3428 .3691  .3722 .3827  .3865 L4039  .4087
23.79 .2340 .2393 .3006  .3120 .3315  .3444 .3766  .3906
C24.40  ,2051  .2126 .2839  .2987 .3198  .3361 .3715  .3885
25.01 .1701 .1811 .2646  .2843 .3067  .3275 .3661  .3869
25.62 .1250  .143] L2714 .2685 .2916  .3187 .3605 .3861
26.23 .0946 .2126 .2512 .2735 L3097 .3543 .3863
26.84 L1685  .2322 .2495  .3008 L3471 .3876
27.45 .0874  .2113 L2061 .2919 .3378  .3906
28.06 .1880 L1041 .2835 .3209  .3955
28.67 L1617 .2759 .2547  .4028
29.28 .1310 .2694 L4130
29.89 .0926 . 2646 L4269
30.50 .2623 L4452
31. 11 .2632 .4687




" TABLE 2

COMPARISOM BETWEEN FULL AND AFPROXIMATE
THREE-DIMENSIONAL BOUNDARY LAYER CALCULATIONS OF Gn(O)

7.32 cm.

t = 3.05 cm. r = 6.10 cm. r = r = 9.15 cm.
g-cm. Full  Approx. Full Approx. Full Approx. Full Approx.
0 L4696 . 4696 L4696  .4696  .4696  .4686 L4696  .4696

.61  .5309  .5307 .5298  .5295  .5292  .5289 .5280  .5277
3.66 .8567 .8555 .8488  .8477  .8443  .8432 .8363  .8353
7.93 1.355 1.351 1.333° 1.330 1.321 1.318 1.300 1.297

10.37 1.669 1.604 1.637 1.632 1.618 1.614 1.586 1.582
13.42 2.102 2.094 2.050 2.044 2.021 2.015 1.970 1.965
17.69 2.809 2.798 2.713 2.703 2.661 2.650 2.569  2.559
20.13 3.288 3.278 3.152  3.139 3.077 3.064 2.949  2.935
23.79 4173 4.172 3.928 3.909 3.797 3.774 3.580 3.552
24.40 4.348  4.35] 4.075 4.055 3.932 3.904 3.693 3.660
25.01 4.534 4.543 4.230 4.207 4.071 4.039 3.809 3.770
25.62 4.729 4.750 4.392 4.366 4.216 4.178 3.927 3.7°1
26.23 ' 4,973 4,561 4.532 4.366  4.321 4.048 3.7 °
26.84 4.723 4.707 4.520 4.469 4177 4.

27.45 4.892 4.891 4.647 4.621 4.296 4.:

28.06 5.0866 4.754 4.777 4.408 4.: .
28.67 5.293 4,938 4,411 4,436
29.28 5.513 5.102 4.545
29.89 5.747 5.270 4.6438
30.50 5.441 4.746
31.11 5.61 4,837
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Fig. 1 Flow geometry and the prediction of flow reversal: --- quasi-

two-dimensional (approximate); fully three-dimensional.




